3.453 \(\int \frac{A+B \sec (c+d x)+C \sec ^2(c+d x)}{a+a \sec (c+d x)} \, dx\)

Optimal. Leaf size=52 \[ -\frac{(A-B+C) \tan (c+d x)}{a d (\sec (c+d x)+1)}+\frac{A x}{a}+\frac{C \tanh ^{-1}(\sin (c+d x))}{a d} \]

[Out]

(A*x)/a + (C*ArcTanh[Sin[c + d*x]])/(a*d) - ((A - B + C)*Tan[c + d*x])/(a*d*(1 + Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.115726, antiderivative size = 52, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.121, Rules used = {4050, 3770, 3919, 3794} \[ -\frac{(A-B+C) \tan (c+d x)}{a d (\sec (c+d x)+1)}+\frac{A x}{a}+\frac{C \tanh ^{-1}(\sin (c+d x))}{a d} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(a + a*Sec[c + d*x]),x]

[Out]

(A*x)/a + (C*ArcTanh[Sin[c + d*x]])/(a*d) - ((A - B + C)*Tan[c + d*x])/(a*d*(1 + Sec[c + d*x]))

Rule 4050

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_)), x_Symbol] :> Dist[C/b, Int[Csc[e + f*x], x], x] + Dist[1/b, Int[(A*b + (b*B - a*C)*Csc[e + f*x])/(a +
b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f, A, B, C}, x]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3919

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(c*x)/a,
x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0]

Rule 3794

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \frac{A+B \sec (c+d x)+C \sec ^2(c+d x)}{a+a \sec (c+d x)} \, dx &=\frac{\int \frac{a A+(a B-a C) \sec (c+d x)}{a+a \sec (c+d x)} \, dx}{a}+\frac{C \int \sec (c+d x) \, dx}{a}\\ &=\frac{A x}{a}+\frac{C \tanh ^{-1}(\sin (c+d x))}{a d}+(-A+B-C) \int \frac{\sec (c+d x)}{a+a \sec (c+d x)} \, dx\\ &=\frac{A x}{a}+\frac{C \tanh ^{-1}(\sin (c+d x))}{a d}-\frac{(A-B+C) \tan (c+d x)}{d (a+a \sec (c+d x))}\\ \end{align*}

Mathematica [B]  time = 0.493384, size = 163, normalized size = 3.13 \[ \frac{4 \cos \left (\frac{1}{2} (c+d x)\right ) \left (A \cos ^2(c+d x)+B \cos (c+d x)+C\right ) \left (\cos \left (\frac{1}{2} (c+d x)\right ) \left (A d x-C \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )+C \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )-\sec \left (\frac{c}{2}\right ) (A-B+C) \sin \left (\frac{d x}{2}\right )\right )}{a d (\cos (c+d x)+1) (A \cos (2 (c+d x))+A+2 B \cos (c+d x)+2 C)} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(a + a*Sec[c + d*x]),x]

[Out]

(4*Cos[(c + d*x)/2]*(C + B*Cos[c + d*x] + A*Cos[c + d*x]^2)*(Cos[(c + d*x)/2]*(A*d*x - C*Log[Cos[(c + d*x)/2]
- Sin[(c + d*x)/2]] + C*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) - (A - B + C)*Sec[c/2]*Sin[(d*x)/2]))/(a*d*(
1 + Cos[c + d*x])*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*(c + d*x)]))

________________________________________________________________________________________

Maple [B]  time = 0.063, size = 115, normalized size = 2.2 \begin{align*} -{\frac{A}{ad}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }+2\,{\frac{A\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) }{ad}}+{\frac{B}{ad}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }+{\frac{C}{ad}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }-{\frac{C}{ad}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{C}{ad}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x)

[Out]

-1/a/d*A*tan(1/2*d*x+1/2*c)+2/a/d*A*arctan(tan(1/2*d*x+1/2*c))+1/a/d*B*tan(1/2*d*x+1/2*c)+1/a/d*ln(tan(1/2*d*x
+1/2*c)+1)*C-1/a/d*C*tan(1/2*d*x+1/2*c)-1/a/d*ln(tan(1/2*d*x+1/2*c)-1)*C

________________________________________________________________________________________

Maxima [B]  time = 1.41614, size = 197, normalized size = 3.79 \begin{align*} \frac{A{\left (\frac{2 \, \arctan \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} - \frac{\sin \left (d x + c\right )}{a{\left (\cos \left (d x + c\right ) + 1\right )}}\right )} + C{\left (\frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} - \frac{\log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a} - \frac{\sin \left (d x + c\right )}{a{\left (\cos \left (d x + c\right ) + 1\right )}}\right )} + \frac{B \sin \left (d x + c\right )}{a{\left (\cos \left (d x + c\right ) + 1\right )}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

(A*(2*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a - sin(d*x + c)/(a*(cos(d*x + c) + 1))) + C*(log(sin(d*x + c)/(
cos(d*x + c) + 1) + 1)/a - log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a - sin(d*x + c)/(a*(cos(d*x + c) + 1))) +
 B*sin(d*x + c)/(a*(cos(d*x + c) + 1)))/d

________________________________________________________________________________________

Fricas [A]  time = 0.507555, size = 247, normalized size = 4.75 \begin{align*} \frac{2 \, A d x \cos \left (d x + c\right ) + 2 \, A d x +{\left (C \cos \left (d x + c\right ) + C\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) -{\left (C \cos \left (d x + c\right ) + C\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \,{\left (A - B + C\right )} \sin \left (d x + c\right )}{2 \,{\left (a d \cos \left (d x + c\right ) + a d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/2*(2*A*d*x*cos(d*x + c) + 2*A*d*x + (C*cos(d*x + c) + C)*log(sin(d*x + c) + 1) - (C*cos(d*x + c) + C)*log(-s
in(d*x + c) + 1) - 2*(A - B + C)*sin(d*x + c))/(a*d*cos(d*x + c) + a*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{A}{\sec{\left (c + d x \right )} + 1}\, dx + \int \frac{B \sec{\left (c + d x \right )}}{\sec{\left (c + d x \right )} + 1}\, dx + \int \frac{C \sec ^{2}{\left (c + d x \right )}}{\sec{\left (c + d x \right )} + 1}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c)),x)

[Out]

(Integral(A/(sec(c + d*x) + 1), x) + Integral(B*sec(c + d*x)/(sec(c + d*x) + 1), x) + Integral(C*sec(c + d*x)*
*2/(sec(c + d*x) + 1), x))/a

________________________________________________________________________________________

Giac [A]  time = 1.20756, size = 124, normalized size = 2.38 \begin{align*} \frac{\frac{{\left (d x + c\right )} A}{a} + \frac{C \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a} - \frac{C \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a} - \frac{A \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + C \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

((d*x + c)*A/a + C*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a - C*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a - (A*tan(1/2*
d*x + 1/2*c) - B*tan(1/2*d*x + 1/2*c) + C*tan(1/2*d*x + 1/2*c))/a)/d